引言
最近刚刚用python写完了一个解析protobuf文件的简单编译器,深感ply实现词法分析和语法分析的简洁方便。乘着余热未过,头脑清醒,记下一点总结和心得,方便各位pythoner参考使用。
ply使用
简介
如果你不是从事编译器或者解析器的开发工作,你可能从未听说过ply。ply是基于python的lex和yacc,而它的作者就是大名鼎鼎Python Cookbook, 3rd Edition的作者。可能有些朋友就纳闷了,我一个业务开发怎么需要自己写编译器呢,各位编程大牛说过,中央决定了,要多尝试新的东西。而且了解一些语法解析的姿势,以后自己解析格式复杂的日志或者数学公式,也是非常有帮助的。
针对没有编译基础的童鞋,强烈建议了解一些文法相关的基本概念。轮子哥强烈推荐的parsing techniques以及编译龙虎鲸书,个人感觉都不适合入门学习,在此推荐胡伦俊的编译原理(电子工业出版社),针对概念的例子讲解很多,很适合入门学习。当然也不需要特别深入研究,知道词法分析和语法分析的相关概念和方法就可以愉快的使用ply了。文档链接:
为了方便大家上手,以求解多元一次方程组为例,讲解一下ply的使用。
例子说明
输入是多个格式为x + 4y - 3.2z = 7
的一次方程,为了让例子尽可能简单,做如下限制:
- 每个方程含有变量的部分在等号左边,常数在等号右边
- 每个方程不限制变量的个数以及变量的顺序,但每个方程每个变量只允许出现一次
- 变量的命令规则为小写字母串(x y xx yy abc 均为合法变量名)
- 变量的系数限制为整数和浮点数,浮点数不允许
1.4e8
的格式,系数和变量紧邻,且系数不能为0 - 方程组和方程组之间用
, ;
隔开
学过线性代数的童鞋肯定知道,只需要将方程组抽象为矩阵,按照线性代数的方法就可以解决。因此只需要将输入方程组解析成右边的矩阵和变量列表即可,剩下的求解过程就可以交给线性代数相关的工具解决。
词法解析
ply中的lex来做词法解析,词法解析的理论有一大堆,但是lex用起来却非常直观,就是用正则表达式的方式将文本字符串解析为一个一个的token,下面的代码就是用lex实现词法解析。
# coding=utf-8from ply import lex# 空格 制表符 回车这些不可见符号都忽略t_ignore = ' \t\r'# 解析错误的时候直接抛出异常def t_error(t): raise Exception('error {} at line {}'.format(t.value[0], t.lineno))# 记录行号,方便出错定位def t_newline(t): r'\n+' t.lexer.lineno += len(t.value)# 支持c++风格的\\注释def t_ignore_COMMENT(t): r'\/\/[^\n]*'# 变量的命令规则def t_VARIABLE(t): r'[a-z]+' return t# 常数命令规则def t_CONSTANT(t): r'\d+(\.\d+)?' t.value = float(t.value) return t# 输入中支持的符号头token,当然也支持t_PLUS = r'\+'的方式将加号定义为tokenliterals = '+-,;='tokens = ('VARIABLE', 'CONSTANT')if __name__ == '__main__': data = ''' -x + 2.4y + z = 0; //this is a comment 9y - z + 7.2x = -1; y - z + x = 8 ''' lexer = lex.lex() lexer.input(data) while True: tok = lexer.token() if not tok: break print tok
直接运行文件就可以将解析的token串打印出来,如下所示,详细的使用文档可以参考ply文档。
LexToken(-,'-',2,5)
LexToken(VARIABLE,'x',2,6) LexToken(+,'+',2,8) LexToken(CONSTANT,2.4,2,10) LexToken(VARIABLE,'y',2,13) LexToken(+,'+',2,15) LexToken(VARIABLE,'z',2,17) LexToken(=,'=',2,19) LexToken(CONSTANT,0.0,2,21) LexToken(;,';',2,22) LexToken(CONSTANT,9.0,3,48) LexToken(VARIABLE,'y',3,49) LexToken(-,'-',3,51) LexToken(VARIABLE,'z',3,53) LexToken(+,'+',3,55) LexToken(CONSTANT,7.2,3,57) LexToken(VARIABLE,'x',3,60) LexToken(=,'=',3,62) LexToken(-,'-',3,64) LexToken(CONSTANT,1.0,3,65) LexToken(;,';',3,66) LexToken(VARIABLE,'y',4,72) LexToken(-,'-',4,74) LexToken(VARIABLE,'z',4,76) LexToken(+,'+',4,78) LexToken(VARIABLE,'x',4,80) LexToken(=,'=',4,82) LexToken(CONSTANT,8.0,4,84)词法解析另一列:
# coding=utf-8# ------------------------------------------------------------# calclex.py## tokenizer for a simple expression evaluator for# numbers and +,-,*,/# ------------------------------------------------------------import ply.lex as lex# List of token names. This is always requiredtokens = ( 'NUMBER', 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'LPAREN', 'RPAREN',)# Regular expression rules for simple tokenst_PLUS = r'\+'t_MINUS = r'-'t_TIMES = r'\*'t_DIVIDE = r'/'t_LPAREN = r'\('t_RPAREN = r'\)'# A regular expression rule with some action codedef t_NUMBER(t): r'\d+' t.value = int(t.value) return t# Define a rule so we can track line numbersdef t_newline(t): r'\n+' t.lexer.lineno += len(t.value)# A string containing ignored characters (spaces and tabs)t_ignore = ' \t'# Error handling ruledef t_error(t): print "Illegal character '%s'" % t.value[0] t.lexer.skip(1)# Build the lexerlexer = lex.lex()#为了使lexer工作,你需要给定一个输入,并传递给input()方法。然后,重复调用token()方法来获取标记序列,下面的代码展示了这种用法:# Test it outdata = '''3 + 4 * 10 + -20 *2'''# Give the lexer some inputlexer.input(data)# Tokenizewhile True: tok = lexer.token() if not tok: break # No more input print tok
直接运行文件就可以将解析的token串打印出来,如下所示,详细的使用文档可以参考ply文档。
$ python calclex.pyLexToken(NUMBER,3,2,1)LexToken(PLUS,'+',2,3)LexToken(NUMBER,4,2,5)LexToken(TIMES,'*',2,7)LexToken(NUMBER,10,2,9)LexToken(PLUS,'+',3,14)LexToken(MINUS,'-',3,16)LexToken(NUMBER,20,3,17)LexToken(TIMES,'*',3,20)LexToken(NUMBER,2,3,21)
语法解析
ply中的yacc用作语法分析,虽然复杂的词法分析可以代替简单的语法分析,但类似于编程语言的解析再复杂的词法分析也胜任不了。在使用yacc之前,需要了解上下文无关文法,这部分内容太多太杂,我也只了解部分简单的概念,有兴趣的可以看一看编译原理深入了解。
目前语法分析的方法有两大类,即自下向上的分析方法和自上而下的分析方法。所谓自上而下的分下法就是从文法的开始符号出发,根据文法规则正向推到出给定句子的一种方法,或者说,从树根开始,往下构造语法树,直到建立每个树叶的分析方法。代表算法是LL(1),此算法文法解析能力不强,对文法定义要求比较高,主流的编译器都没有使用。自下而上的分析法是从给定的输入串开始,根据文法规则逐步进行归约,直至归约到文法的开始符号,或者说从语法书的末端开始,步步向上归约,直至归约到根节点的分析方法。代表算法有SLR、LRLR,ply使用的就是LRLR。
因此我们只需要定义文法和规约动作即可,以下就是完整的代码。
# -*- coding=utf8 -*-from ply import ( lex, yacc)# 空格 制表符 回车这些不可见符号都忽略t_ignore = ' \t\r'# 解析错误的时候直接抛出异常def t_error(t): raise Exception('error {} at line {}'.format(t.value[0], t.lineno))# 记录行号,方便出错定位def t_newline(t): r'\n+' t.lexer.lineno += len(t.value)# 支持c++风格的\\注释def t_ignore_COMMENT(t): r'\/\/[^\n]*'# 变量的命令规则def t_VARIABLE(t): r'[a-z]+' return t# 常数命令规则def t_CONSTANT(t): r'\d+(\.\d+)?' t.value = float(t.value) return t# 输入中支持的符号头token,当然也支持t_PLUS = r'\+'的方式将加号定义为tokenliterals = '+-,;='tokens = ('VARIABLE', 'CONSTANT')# 顶层文法,规约的时候equations对应的p[1]是一个列表,包含了方程左边各个变量与系数还有方程左边的常数def p_start(p): """start : equations""" var_count, var_list = 0, [] for left, _ in p[1]: for con, var_name in left: if var_name in var_list: continue var_list.append(var_name) var_count += 1 matrix = [[0] * (var_count + 1) for _ in xrange(len(p[1]))] for counter, eq in enumerate(p[1]): left, right = eq for con, var_name in left: matrix[counter][var_list.index(var_name)] = con matrix[counter][-1] = -right var_list.append(1) p[0] = matrix, var_list# 方程组对应的文法,每个方程用,或者;做分隔def p_equations(p): """equations : equation ',' equations | equation ';' equations | equation""" if len(p) == 2: p[0] = [p[1]] else: p[0] = [p[1]] + p[3]# 单个方程对应的文法def p_equation(p): """equation : eq_left '=' eq_right""" p[0] = (p[1], p[3])# 方程等式左边对应的文法def p_eq_left(p): """eq_left : var_unit eq_left |""" if len(p) == 1: p[0] = [] else: p[0] = [p[1]] + p[2]# 六种文法对应例子: x, 5x, +x, -x, +4x, -4y# 归约的形式是一个元组,例: (5, 'x')def p_var_unit(p): """var_unit : VARIABLE | CONSTANT VARIABLE | '+' VARIABLE | '-' VARIABLE | '+' CONSTANT VARIABLE | '-' CONSTANT VARIABLE""" len_p = len(p) if len_p == 2: p[0] = (1.0, p[1]) elif len_p == 3: if p[1] == '+': p[0] = (1.0, p[2]) elif p[1] == '-': p[0] = (-1.0, p[2]) else: p[0] = (p[1], p[2]) else: if p[1] == '+': p[0] = (p[2], p[3]) else: p[0] = (-p[2], p[3])# 方程等式右边对应的常数,对应的例子:1.2, +1.2, -1.2def p_eq_right(p): """eq_right : CONSTANT | '+' CONSTANT | '-' CONSTANT""" if len(p) == 3: if p[1] == '-': p[0] = -p[2] else: p[0] = p[2] else: p[0] = p[1]if __name__ == '__main__': data = ''' -x + 2.4y + z = 0; //this is a comment 9y - z + 7.2x = -1; y - z + x = 8 ''' lexer = lex.lex() parser = yacc.yacc(debug=True) lexer.lineno = 1 s = parser.parse(data) print s
直接运行文件即可,得到的输出如下,之后就可以根据线性代数的方法求解各个变量的值
WARNING: no p_error() function is defined
Generating LALR tables ([[-1.0, 2.4, 1.0, -0.0], [7.2, 9.0, -1.0, 1.0], [1.0, 1.0, -1.0, -8.0]], ['x', 'y', 'z', 1])总结
依托于python简洁的语法,ply为我们提供了一个强大的语法分析工具,更复杂的例子可以参考,这是我用ply实现的一个简单的protobuf解析器,用于减少频繁的中间文件生成。有这种神器,一颗赛艇!